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Abstract

In this paper, the stability of periodical elastic motion of a flexible four bar crank rocker mechanism is
analyzed using the first approximation of Liapunov’s stability theorem and Floquet theory. A procedure
for predicting the stability is presented. Experimental investigation on the stability is carried out. Strain
responses of the coupler up-surface midpoint of the mechanism are measured for several angular velocities
of the crank. The stability of periodical elastic motion of the coupler for these angular velocities is
determined based on the strain responses. The experimentally obtained conclusions agree well with the
analytical conclusions presented in Section 4. This shows that the stability analysis of periodical elastic
motion of the mechanism is correct.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

During high-speed operation, flexible mechanism systems exhibit obvious elastic vibratory
deflections. This can reduce the motion accuracy and shorten the longevity of the systems. So
research on elastic dynamics and elastic vibration stability of flexible mechanisms is very useful.
Over the past two decades, a considerable amount of research has addressed problems associated
with dynamics modelling, calculation and control of flexible mechanisms. However, only a few
studies [1–7] have been conducted on elastic vibration stability of flexible mechanism systems.
Zadoks and Midha [3,4] derived the non-linear equations of motion for an elastic two-degree-of-
freedom machine system in torsional vibration, and linearized the equations about the system’s
steady state rigid-body response. Then the stability of the linearized equations (with time-periodic
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coefficients) was examined using Floquet theory. Mahyuddin et al. [5,6] developed a method to
study parametric stability of flexible cam-follower systems based on Floquet theory. This method
was applied to an automotive valve train which was modelled as a single-degree-of-freedom
vibration system. The parametric vibration stability of the system was studied, and the results are
presented in the form of parametric stability charts. Dynamic stability of parametrically excited
flexible cam-follower systems was also investigated by Feng and Lan [7]. They derived the
equations of approximate transition curves that separate the stable from the unstable solutions in
the plane of the dimensionless frequency and excitation parameter by using the method of
multiple scales and the technique of Fourier series expansion.
One of important research fields is stability study of periodical elastic motion of flexible linkage

systems. This study can be referred to stability analysis of periodical solution of non-linear elastic
motion differential equations for the systems. It has not been extensively dealt with so far. Yang
and Sadler [8] and Farhang and Midha [9] indicated that steady state elastic motion response of
flexible linkage systems operating at constant input rotational speed exhibits period
characteristics. According to Liapunov theory [10], when periodical elastic motion of the systems
is unstable, real elastic motion of the systems will leave far the neighborhood of periodical elastic
motion and show as anomalistic severe elastic vibration. So the knowledge of stability of
periodical elastic motion of flexible linkage systems is very useful to the engineer in avoiding the
occurrence of the unstable periodical elastic motion.
In this paper, a flexible four bar crank rocker mechanism is taken as an object of study.

Theoretical research on the stability of periodical elastic motion of the mechanism is performed,
and a procedure for determining the stability is presented. On the basis of the theoretical research,
experimental investigation on the stability of periodical elastic motion of the mechanism is carried
out to verify theoretical conclusions.

2. Dynamic model

The model for study is a four bar crank rocker mechanism (as shown in Fig. 1). This mechanism
can realize transformation from rotation of the crank to swing of the rocker. In order to realize
the transformation, the length of the crank is designed much less than that of the coupler and the
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Fig. 1. Schematic diagram of a four bar crank rocker mechanism.
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rocker. Therefore, the crank is usually made into a short thick rigid rod or a rigid disk with lesser
radius. Thus, the crank can be considered as a rigid body in analytical modelling of the
mechanism. However, the coupler and the rocker are slender rods usually compared to the crank,
and their stiffness is much smaller. Hence, the effect of flexibility of the coupler and the rocker on
motion of the mechanism must be taken into consideration. A finite element modelling of the
mechanism results in the following non-linear differential equation of elastic motion [11]:

MðjÞ.qþ Cðj;o; qÞ’qþ Kðj;o; qÞq ¼ Q�ðj;oÞ; ð1Þ

where j and o are the crank angle and the crank angular velocity, respectively, and q is the global
deflection vector. The expansion of q is

q ¼ ½q1 q2 ? q3ðn1þn2Þ�
T; ð2Þ

where q1 is elastic rotation of left hand end of element 1, q2 is elastic displacement of left hand end
of element 2 in the x direction, q3 is elastic displacement of left hand end of element 2 in the y

direction,y; q3ðn1þn2Þ is elastic rotation of right hand end of element n1 þ n2: Eq. (1) is formulated
on the assumption that the mechanism operates with constant input rotational speed, the crank is
taken as a rigid body, the coupler and the rocker are considered as flexible beams. Large-
deformation non-linearity, motion constraint and coupling terms between rigid body and elastic
motion of flexible links are considered in the derivation of Eq. (1). Matrices MðjÞ; Cðj;o; qÞ;
Kðj;o; qÞ and vector Q�ðj;oÞ were proved to be periodic functions of the crank angle j; and the
period equals 2p [11], i.e.,

MðjÞ ¼Mðjþ 2pÞ;

Cðj;o; qÞ ¼ Cðjþ 2p;o; qÞ;

Kðj;o; qÞ ¼ Kðjþ 2p;o; qÞ;

Q�ðj;oÞ ¼ Q�ðjþ 2p;oÞ: ð3Þ

3. Stability analysis of periodical elastic motion

The boundary conditions for periodical elastic motion of the flexible four bar crank rocker
mechanism are

qð0Þ ¼ qðTÞ; ’qð0Þ ¼ ’qðTÞ; ð4Þ

where T ¼ 2p=o is the time taken by the crank to complete one revolution, the super dot ð�Þ
represents the time derivative. The study of the stability of periodical elastic motion of the
mechanism can be referred to stability analysis of the solution satisfying Eq. (1) and periodicity
boundary conditions (4). Additionally, it is most convenient for the stability analysis to consider
the equations in the first order form. Let

%q1 ¼ q; %q2 ¼
dq

dj
ð5Þ
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and introduce notation

%q ¼
%q1

%q2

" #
: ð6Þ

Then Eq. (1) can be rewritten as

d%q

dj
¼ %fðj; %qÞ; ð7Þ

where

%fðj; %qÞ ¼
%q2

1

o2
MðjÞ½ ��1 Q�ðj;oÞ � oCðj;o; %q1Þ%q2 � Kðj;o; %q1Þ%q1

� �
2
4

3
5: ð8Þ

Periodical boundary conditions (4) can be rewritten as

%qjj¼0 ¼ %qjj¼2p: ð9Þ

So the study of the stability of periodical elastic motion of the mechanism can be referred to
stability analysis of the solution satisfying Eq. (7) and periodicity boundary condition (9).
Assuming that %q� ¼ %q�ðjÞ is the solution satisfying Eq. (7) and periodicity boundary condition

(9), and %y ¼ %yðjÞ is the perturbation from the solution, we have

%y ¼ %q� %q
�: ð10Þ

Introducing Eq. (10) into Eq. (7), we obtain

d%y

dj
¼ f j; %qð Þ � fðj; %q�Þ; ð11Þ

where

fðj; %qÞ ¼
%q2

�
1

o2
MðjÞ½ ��1 oCðj;o; %q1Þ%q2 þ Kðj;o; %q1Þ%q1½ �

2
4

3
5: ð12Þ

Substituting equation %q ¼ %q� þ %y into Eq. (11) yields

d%y

dj
¼ fðj; %q� þ %yÞ � fðj; %q�Þ ¼ JðjÞ%yþOðj%yj2Þ; ð13Þ

where

JðjÞ ¼
@fðj; %qÞ

@%q

				
%q¼%q�¼%q�ðjÞ

: ð14Þ

Oðj%yj2Þ is higher order term in the perturbation. Thus the stability characteristic of null solution

%y ¼ 0 of Eq. (13) is the same as the stability characteristic of periodical solution %q� ¼ %q�ðjÞ of
Eq. (7). So the study of the stability of periodical elastic motion of the mechanism can be referred
to the stability analysis of null solution of Eq. (13). Assuming that the perturbation %y is
sufficiently small for the higher order term Oðj%yj2Þ to be neglected, we obtain the first
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approximation of Eq. (13)

d%y

dj
¼ JðjÞ%y; ð15Þ

where coefficient matrix JðjÞ is periodic function of the crank angle j; and the period equals 2p;
i.e., JðjÞ ¼ Jðjþ 2pÞ: It can be proved as follows:
Substituting the first three equations of Eqs. (3) into Eq. (12), we obtain

fðj; %qÞ ¼ fðjþ 2p; %qÞ: ð16Þ

According to Eq. (14), Jðjþ 2pÞ can be expressed as

Jðjþ 2pÞ ¼
@fðjþ 2p; %qÞ

@%q

				
%q¼%q�ðjþ2pÞ

: ð17Þ

Considering that the period of function %q�ðjÞ is 2p; Eq. (17) can be rewritten as

Jðjþ 2pÞ ¼
@fðjþ 2p; %qÞ

@%q

				
%q¼%q�ðjÞ

: ð18Þ

Substituting Eq. (16) into Eq. (18) yields

Jðjþ 2pÞ ¼
@fðj; %qÞ

@%q

				
%q¼%q�ðjÞ

: ð19Þ

Comparing Eq. (14) with Eq. (19), we obtain

JðjÞ ¼ Jðjþ 2pÞ: ð20Þ

So Eq. (15) is linear differential equation with periodic coefficient.
According to Liapunov’s theorem on the stability in the first approximation [10], when system

(15) possess significant behavior, the stability characteristic of null solution of system (13) is the
same as that of null solution of system (15). Because system (15) is a linear system with periodic
coefficient, we can determine the stability characteristic of null solution of system (15) using
Floquet’s theory [12]. Assuming that the standard fundamental matrix of Eq. (15) is X ¼ XðjÞ;
i.e., X ¼ XðjÞ is the solution of matrix differential equation

dX

dj
¼ JðjÞX;

Xð0Þ ¼ I; ð21Þ

where I is identity matrix. According to Floquet’s theory, the stability characteristic of null
solution of system (15) can be determined by the eigenvalues li of matrix Xð2pÞ: These eigenvalues
are obtained from the following characteristic equation:

detðlI� Xð2pÞÞ ¼ 0: ð22Þ

According to Floquet’s theory the statements concerning the stability of system (15) can be
summarized as follows: If maxjlijo1; null solution of system (15) is asymptotically stable; if
maxjlij > 1; null solution of system (15) is unstable.
According to Liapunov’s theorem on the stability in the first approximation, we can conclude

that: if maxjlijo1; null solution of system (13) is asymptotically stable. If maxjlij > 1; null solution
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of system (13) is unstable. If maxjlij ¼ 1 (i.e. system (15) exhibit critical behavior), null solution of
system (13) can be either stable or unstable, depending on the higher order term Oðj%yj2Þ:
Considering that the study of the stability of periodical elastic motion of the mechanism can be

referred to analysis of the stability characteristics of null solution of Eq. (13), so the conclusions
concerning the stability of periodical elastic motion of the mechanism can be summarized as
follows:

1. If maxjlijo1; periodical elastic motion of the mechanism is asymptotically stable.
2. If maxjlij > 1; periodical elastic motion of the mechanism is unstable.

From the conclusions, the eigenvalues of matrix Xð2pÞ must be determined in order to analyze
the stability of periodical elastic motion of the mechanism. So the procedure for predicting the
stability can be summarized as follows:

1. Determine the numerical solution %q�ðjÞ satisfying Eq. (7) and periodicity boundary condition
(9) using the shoot method, where 0pjp2p:

2. Determine the numerical solution JðjÞ from Eq. (14), where 0pjp2p:
3. Integrate matrix differential equation (21) using the Runge–Kutta method until matrix Xð2pÞ is

obtained.
4. Determine all eigenvalues li of matrix Xð2pÞ:
5. Compute maxjlij:
6. Compare maxjlij with 1, if maxjlijo1; periodical elastic motion of the mechanism is

asymptotically stable. If maxjlij > 1; periodical elastic motion of the mechanism is unstable.

4. Example

To illustrate the stability analysis of periodical elastic motion of flexible four bar crank rocker
mechanism, we consider the model illustrated in Fig. 2. The properties of this model, used for the
theoretical and experimental analysis, are listed in Table 1. The crank is assumed to be rigid. The
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Fig. 2. Example stability problem—a flexible four bar crank rocker mechanism model.
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Table 1

Flexible four bar crank rocker mechanism parameters

Length Width Height Mass density Modulus of elasticity

(mm) (mm) (mm) ðkg=m3Þ ðN=m2Þ

Crank 100 — — 7:8
 103 —

Coupler 330 24 2 7:8
 103 2:1
 1011

Rocker 260 24 3 7:8
 103 2:1
 1011

Distance between ground pivots ¼ 400 mm:
Lumped mass of the bearing assembly ¼ 0:046 kg:
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coupler and the rocker are assumed to be flexible, and are modelled with beam elements. A total
of five elements were employed, three for the couple and two for the rocker.
The periodical elastic motion response of the mechanism for a specified constant crank angular

velocity o ¼ 65 rad=s is obtained by using the shoot method. Figs. 3–5 show the periodical
responses of the first three generalized coordinates q1; q2 and q3; respectively. All eigenvalues li of
matrix Xð2pÞ are determined by using QR method, where maxjlijE1:415 > 1: This indicates that
the periodical elastic motion of the mechanism for the crank angular velocity o ¼ 65 rad=s is
unstable. The values of maxjlij for other crank angular velocities can be analogously determined.
Table 2 lists the values of maxjlij for a number of crank angular velocities in the range of
50–70 rad=s:
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Fig. 5. Elastic displacement of left hand end of element 2 in the y direction versus crank angle for a specified crank

angular velocity of 65 rad=s:

Table 2

The values of maxjli j for a number of crank angular velocities in the range of 50–70 rad=s

o ðrad=sÞ 50 51 52 53 54 55 56

maxjli j 4:002
 10�2 7:641
 10�2 8:501
 10�2 1:189
 10�1 1:654
 10�1 2:241
 10�1 2:886
 10�1

o ðrad=sÞ 57 58 59 60 61 62 63

maxjli j 3:616
 10�1 4:386
 10�1 5:204
 10�1 6:802
 10�1 7:001
 10�1 8:402
 10�1 1.139

o ðrad=sÞ 64 65 66 67 68 69 70

maxjli j 1.306 1.415 1.505 1.574 1.628 1.664 1.703
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From Table 2 it can be seen that maxjlijo1 when o ¼ 50262 rad=s and maxjlij > 1 when
o ¼ 63270 rad=s: So the following conclusions can be obtained:

1. When the mechanism is operated at the input crank angular velocity o ¼ 50262 rad=s; the
periodical elastic motion of the mechanism is stable.

2. When the mechanism is operated at the input crank angular velocity o ¼ 63270 rad=s; the
periodical elastic motion of the mechanism is unstable.

5. Experimental investigation on the stability of periodical elastic motion

The characteristics of elastic motion of flexible links in mechanisms can be reflected by the
histories of flexible links strains [11]. A flexible four bar crank rocker mechanism is taken as an
object of experimental investigation in this paper. Strain responses of the upper surface midpoint
of the coupler for a number of crank angular velocities are recorded. From the characteristics of
the responses, the stability of periodical elastic motion of the mechanism for these crank angular
velocities is determined. The experimentally obtained conclusions are then compared with the
analytical conclusions presented in Section 4 to verify the analytical methods.

5.1. Experimental model

A photograph of the experimental apparatus is shown in Fig. 6. All links are constructed from
steel. Table 1 lists the parameters of the experimental four bar crank rocker mechanism. The
mechanism consists of a rigid crank, a flexible coupler and a flexible rocker. The input shaft is
supported by a ball bearing. The crank-coupler, coupler-rocker, and rocker-ground connections
are made via pins and small ball bearings. The mechanism is attached to a 3 cm thick oak
foundation. The oak foundation is then bolted to a concrete support anchored to the floor in
order to minimize external vibrations. The input crank is driven by a 1:1 kW dc motor. A 22 cm
diameter sheave, serving as a flywheel, is mounted on the input shaft to minimize any angular
velocity fluctuations of the crank. The crank angular velocity is controlled with a Bodine dc motor
controller. The strain gage is located at the upper surface midpoint of the coupler. The strain is
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measured with a four active-arm bridge circuit, using Micro Measurement EA-13-250BG-120
strain gages. The strain signals are recorded using an IBM Netvista personal computer. The
mechanism is run at a number of crank angular velocities, between 55 and 65 rad=s: The crank
zero-position is recorded using a GE H21A2 photon-coupled Interrupter Module with an 8 ms on-
time. The photocell is triggered each time the crank passes through its zero-position by a rotating
disk with a single small hole.

5.2. Experimental results

The experimental results are presented by plotting the strain measurements throughout a cycle
of motion. Figs. 7–10 show the experimental strains at the upper surface midpoint of the coupler
for four representative counter clockwise crank angular velocities of 55, 59, 62 and 65 rad=s:
From Figs. 7–9 it can be seen that the strains and the first time derivatives of strains at the

beginning of each cycle are quite close to those at the end of the each cycle. This shows that
responses of the upper surface midpoint strain of the coupler for crank angular velocities of 55,
59, and 62 rad=s exhibit periodic characteristics. The periodic characteristics of the strain
responses indicate that the elastic motion responses of the coupler for the above crank angular
velocities are also periodic. So we can conclude that periodic elastic motion responses of the
coupler for above crank angular velocities are stable. This conclusion is in agreement with the
analytical conclusion 1 presented in Section 4.
From Fig. 10 it can be seen that the amplitude of the strain signal for the crank angular velocity

of 65 rad=s is much larger when compared to that of other strain signals for crank angular
velocities of 55, 59, and 62 rad=s; and the strain response for the crank angular velocity of
65 rad=s exhibit severe non-periodic characteristics. This indicates that the periodic elastic motion
of the coupler for the crank angular velocity 65 rad=s has not been realized. Therefore, periodic
elastic motion of the coupler for this crank angular velocity is unstable. This conclusion agrees
with the analytical conclusion 2 presented in Section 4.
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Agreement between above experimentally obtained conclusions and analytical conclusions
presented in Section 4 indicates that the theoretical analysis of periodic elastic motion stability of
the flexible four bar crank rocker mechanism is correct.

6. Conclusion remarks

In this work, a stability analysis of periodic elastic motion of flexible four bar crank rocker
mechanism is performed. A procedure for predicting the stability is presented. To illustrate the
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procedure, a particular flexible four bar crank rocker linkage system is taken as a case of study.
Input crank angular velocity ranges corresponding to stable and unstable periodic elastic motion
of the system are obtained, respectively.
Experimental investigation on the stability of periodic elastic motion of the system is carried

out. The stability for four representative crank angular velocities is determined based on
experimental results. The experimentally obtained conclusions agree well with the analytical
conclusions presented in Section 4. This shows that the theoretical analysis of the periodical elastic
motion stability of flexible four bar crank rocker mechanism is correct.
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